Технология работы с файлами

Общие сведения.

І. Файл – это определённое количество информации (программа или данные), имеющие имя и хранящиеся в долговременной (внешней) памяти.

Имя файла разделено на две части точкой: собственно имя файла и расширение, определяющее его тип. Имя даёт пользователь, расширение обычно задаётся программой автоматически.

Таблица: расширения в именах файлов.

Тип файла	Расширение				
Исполняемые файлы	.exe, .com				
Текстовые файлы	.txt, .doc, docx				
Графические файлы	.bmp, .gif, .jpg				
Звуковые файлы	.wav, .mid				
Видеофайлы	.avi				
Web - страница	.htm				
Программы на языках	.bas, .pas				
программирования					

Имена файлам даются по правилу ИМЯ • РАСШИРЕНИЕ

Для операционной системы MS-DOS имя файла содержит не более 8-букв латинского алфавита и цифр, а расширение состоит из трёх латинских букв, например: **proba.txt**

Для операционной системы Windows имя файла может иметь до 255 символов (можно использовать и русский алфавит) и должно отражать суть файла, например: Общие сведения.docx

П. Файловая система Windows основана на понятии ПАПКА. Папки содержат файлы (документы, т.д.) и другие папки, т.е. система имеет иерархическую структуру. Это позволяет лучше организовать файлы и содержащуюся в них информацию.

Для управления файлами используют программу ПРОВОДНИК.

ІІІ. Порядок хранения файлов называют файловой структурой.

Основным устройством долговременной памяти являются ДИСКИ. Сектора диска нумеруются в линейной последовательности от 1-ого сектора нулевой дорожки до последнего сектора последней дорожки. Файл записывается в произвольные свободные, которые могут находиться на различных дорожках сектора.

No	№ сектора													
дорожки														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	15	16	17	18	19	••		33	34	35	<mark>36</mark>			•
2	29	30	31	32	••	••		••	47	48	<mark>49</mark>	40	41	••
79														2880

Файл 1 хранится в секторах 24,25 и 39.

Файл 2 хранится в секторах 22, 23 и 37.

Полная информация о секторах, которые занимают файлы, содержится в таблице размещения файлов (FAT – File Allocation Table).

Имя файла	Адрес первого	Объём файла	Дата создания	Время создания	
	сектора файла	(Кбайт)			
Файл 1	34	2	14.01.06.	14.29	
Файл 2	36	1	14.01.07.	14.56	

IV. Существует два различных способа форматирования дисков: полное, быстрое.

Полное - проверка качества магнитного покрытия дискеты и её разметку на дорожки и сектора, создание корневого каталога и таблицы размещения файлов. После полного форматирования вся информация на диске будет уничтожена.

Быстрое - производит очистку каталога и таблиц размещения файлов.

Логическая структура жёстких дисков отличается от структуры гибких дисков. Минимальный элемент жёсткого диска включает в себя несколько секторов и называется кластером. Размер кластера зависит от типа используемой таблицы FAT и от ёмкости жёсткого диска. FAT16 может адресовать $2^{16} = 65536$ кластеров.

Обычно размер кластера можно определить, поделив объем памяти диска на 65536 и округлив результат до ближайшего числа, кратного степени двойки. Так, размер кластеров 1,2-гигабайтного диска составляет 32 Кбайт:

1,2 Гбайт*1024=1228,8 Мбайт*1024=1258291,2 Кбайт

1258291,2 Кбайт: 65 536 кластеров = 19,2 Кбайт

Ближайшее кратное степени двойки число к 19,5 Кбайт = $2^5 = 32$ Кбайт.